(0) Obligation:

Runtime Complexity Relative TRS:
The TRS R consists of the following rules:

a(C(x1, x2), y, z) → C(a(x1, y, z), a(x2, y, y))
a(Z, y, z) → Z
eqZList(C(x1, x2), C(y1, y2)) → and(eqZList(x1, y1), eqZList(x2, y2))
eqZList(C(x1, x2), Z) → False
eqZList(Z, C(y1, y2)) → False
eqZList(Z, Z) → True
second(C(x1, x2)) → x2
first(C(x1, x2)) → x1

The (relative) TRS S consists of the following rules:

and(False, False) → False
and(True, False) → False
and(False, True) → False
and(True, True) → True

Rewrite Strategy: INNERMOST

(1) RenamingProof (EQUIVALENT transformation)

Renamed function symbols to avoid clashes with predefined symbol.

(2) Obligation:

Runtime Complexity Relative TRS:
The TRS R consists of the following rules:

a(C(x1, x2), y, z) → C(a(x1, y, z), a(x2, y, y))
a(Z, y, z) → Z
eqZList(C(x1, x2), C(y1, y2)) → and(eqZList(x1, y1), eqZList(x2, y2))
eqZList(C(x1, x2), Z) → False
eqZList(Z, C(y1, y2)) → False
eqZList(Z, Z) → True
second(C(x1, x2)) → x2
first(C(x1, x2)) → x1

The (relative) TRS S consists of the following rules:

and(False, False) → False
and(True, False) → False
and(False, True) → False
and(True, True) → True

Rewrite Strategy: INNERMOST

(3) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)

Infered types.

(4) Obligation:

Innermost TRS:
Rules:
a(C(x1, x2), y, z) → C(a(x1, y, z), a(x2, y, y))
a(Z, y, z) → Z
eqZList(C(x1, x2), C(y1, y2)) → and(eqZList(x1, y1), eqZList(x2, y2))
eqZList(C(x1, x2), Z) → False
eqZList(Z, C(y1, y2)) → False
eqZList(Z, Z) → True
second(C(x1, x2)) → x2
first(C(x1, x2)) → x1
and(False, False) → False
and(True, False) → False
and(False, True) → False
and(True, True) → True

Types:
a :: C:Z → a → a → C:Z
C :: C:Z → C:Z → C:Z
Z :: C:Z
eqZList :: C:Z → C:Z → False:True
and :: False:True → False:True → False:True
False :: False:True
True :: False:True
second :: C:Z → C:Z
first :: C:Z → C:Z
hole_C:Z1_0 :: C:Z
hole_a2_0 :: a
hole_False:True3_0 :: False:True
gen_C:Z4_0 :: Nat → C:Z

(5) OrderProof (LOWER BOUND(ID) transformation)

Heuristically decided to analyse the following defined symbols:
a, eqZList

(6) Obligation:

Innermost TRS:
Rules:
a(C(x1, x2), y, z) → C(a(x1, y, z), a(x2, y, y))
a(Z, y, z) → Z
eqZList(C(x1, x2), C(y1, y2)) → and(eqZList(x1, y1), eqZList(x2, y2))
eqZList(C(x1, x2), Z) → False
eqZList(Z, C(y1, y2)) → False
eqZList(Z, Z) → True
second(C(x1, x2)) → x2
first(C(x1, x2)) → x1
and(False, False) → False
and(True, False) → False
and(False, True) → False
and(True, True) → True

Types:
a :: C:Z → a → a → C:Z
C :: C:Z → C:Z → C:Z
Z :: C:Z
eqZList :: C:Z → C:Z → False:True
and :: False:True → False:True → False:True
False :: False:True
True :: False:True
second :: C:Z → C:Z
first :: C:Z → C:Z
hole_C:Z1_0 :: C:Z
hole_a2_0 :: a
hole_False:True3_0 :: False:True
gen_C:Z4_0 :: Nat → C:Z

Generator Equations:
gen_C:Z4_0(0) ⇔ Z
gen_C:Z4_0(+(x, 1)) ⇔ C(Z, gen_C:Z4_0(x))

The following defined symbols remain to be analysed:
a, eqZList

(7) RewriteLemmaProof (LOWER BOUND(ID) transformation)

Proved the following rewrite lemma:
a(gen_C:Z4_0(n6_0), hole_a2_0, hole_a2_0) → gen_C:Z4_0(n6_0), rt ∈ Ω(1 + n60)

Induction Base:
a(gen_C:Z4_0(0), hole_a2_0, hole_a2_0) →RΩ(1)
Z

Induction Step:
a(gen_C:Z4_0(+(n6_0, 1)), hole_a2_0, hole_a2_0) →RΩ(1)
C(a(Z, hole_a2_0, hole_a2_0), a(gen_C:Z4_0(n6_0), hole_a2_0, hole_a2_0)) →RΩ(1)
C(Z, a(gen_C:Z4_0(n6_0), hole_a2_0, hole_a2_0)) →IH
C(Z, gen_C:Z4_0(c7_0))

We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).

(8) Complex Obligation (BEST)

(9) Obligation:

Innermost TRS:
Rules:
a(C(x1, x2), y, z) → C(a(x1, y, z), a(x2, y, y))
a(Z, y, z) → Z
eqZList(C(x1, x2), C(y1, y2)) → and(eqZList(x1, y1), eqZList(x2, y2))
eqZList(C(x1, x2), Z) → False
eqZList(Z, C(y1, y2)) → False
eqZList(Z, Z) → True
second(C(x1, x2)) → x2
first(C(x1, x2)) → x1
and(False, False) → False
and(True, False) → False
and(False, True) → False
and(True, True) → True

Types:
a :: C:Z → a → a → C:Z
C :: C:Z → C:Z → C:Z
Z :: C:Z
eqZList :: C:Z → C:Z → False:True
and :: False:True → False:True → False:True
False :: False:True
True :: False:True
second :: C:Z → C:Z
first :: C:Z → C:Z
hole_C:Z1_0 :: C:Z
hole_a2_0 :: a
hole_False:True3_0 :: False:True
gen_C:Z4_0 :: Nat → C:Z

Lemmas:
a(gen_C:Z4_0(n6_0), hole_a2_0, hole_a2_0) → gen_C:Z4_0(n6_0), rt ∈ Ω(1 + n60)

Generator Equations:
gen_C:Z4_0(0) ⇔ Z
gen_C:Z4_0(+(x, 1)) ⇔ C(Z, gen_C:Z4_0(x))

The following defined symbols remain to be analysed:
eqZList

(10) RewriteLemmaProof (LOWER BOUND(ID) transformation)

Proved the following rewrite lemma:
eqZList(gen_C:Z4_0(+(1, n203_0)), gen_C:Z4_0(n203_0)) → False, rt ∈ Ω(1 + n2030)

Induction Base:
eqZList(gen_C:Z4_0(+(1, 0)), gen_C:Z4_0(0)) →RΩ(1)
False

Induction Step:
eqZList(gen_C:Z4_0(+(1, +(n203_0, 1))), gen_C:Z4_0(+(n203_0, 1))) →RΩ(1)
and(eqZList(Z, Z), eqZList(gen_C:Z4_0(+(1, n203_0)), gen_C:Z4_0(n203_0))) →RΩ(1)
and(True, eqZList(gen_C:Z4_0(+(1, n203_0)), gen_C:Z4_0(n203_0))) →IH
and(True, False) →RΩ(0)
False

We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).

(11) Complex Obligation (BEST)

(12) Obligation:

Innermost TRS:
Rules:
a(C(x1, x2), y, z) → C(a(x1, y, z), a(x2, y, y))
a(Z, y, z) → Z
eqZList(C(x1, x2), C(y1, y2)) → and(eqZList(x1, y1), eqZList(x2, y2))
eqZList(C(x1, x2), Z) → False
eqZList(Z, C(y1, y2)) → False
eqZList(Z, Z) → True
second(C(x1, x2)) → x2
first(C(x1, x2)) → x1
and(False, False) → False
and(True, False) → False
and(False, True) → False
and(True, True) → True

Types:
a :: C:Z → a → a → C:Z
C :: C:Z → C:Z → C:Z
Z :: C:Z
eqZList :: C:Z → C:Z → False:True
and :: False:True → False:True → False:True
False :: False:True
True :: False:True
second :: C:Z → C:Z
first :: C:Z → C:Z
hole_C:Z1_0 :: C:Z
hole_a2_0 :: a
hole_False:True3_0 :: False:True
gen_C:Z4_0 :: Nat → C:Z

Lemmas:
a(gen_C:Z4_0(n6_0), hole_a2_0, hole_a2_0) → gen_C:Z4_0(n6_0), rt ∈ Ω(1 + n60)
eqZList(gen_C:Z4_0(+(1, n203_0)), gen_C:Z4_0(n203_0)) → False, rt ∈ Ω(1 + n2030)

Generator Equations:
gen_C:Z4_0(0) ⇔ Z
gen_C:Z4_0(+(x, 1)) ⇔ C(Z, gen_C:Z4_0(x))

No more defined symbols left to analyse.

(13) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n1) was proven with the following lemma:
a(gen_C:Z4_0(n6_0), hole_a2_0, hole_a2_0) → gen_C:Z4_0(n6_0), rt ∈ Ω(1 + n60)

(14) BOUNDS(n^1, INF)

(15) Obligation:

Innermost TRS:
Rules:
a(C(x1, x2), y, z) → C(a(x1, y, z), a(x2, y, y))
a(Z, y, z) → Z
eqZList(C(x1, x2), C(y1, y2)) → and(eqZList(x1, y1), eqZList(x2, y2))
eqZList(C(x1, x2), Z) → False
eqZList(Z, C(y1, y2)) → False
eqZList(Z, Z) → True
second(C(x1, x2)) → x2
first(C(x1, x2)) → x1
and(False, False) → False
and(True, False) → False
and(False, True) → False
and(True, True) → True

Types:
a :: C:Z → a → a → C:Z
C :: C:Z → C:Z → C:Z
Z :: C:Z
eqZList :: C:Z → C:Z → False:True
and :: False:True → False:True → False:True
False :: False:True
True :: False:True
second :: C:Z → C:Z
first :: C:Z → C:Z
hole_C:Z1_0 :: C:Z
hole_a2_0 :: a
hole_False:True3_0 :: False:True
gen_C:Z4_0 :: Nat → C:Z

Lemmas:
a(gen_C:Z4_0(n6_0), hole_a2_0, hole_a2_0) → gen_C:Z4_0(n6_0), rt ∈ Ω(1 + n60)
eqZList(gen_C:Z4_0(+(1, n203_0)), gen_C:Z4_0(n203_0)) → False, rt ∈ Ω(1 + n2030)

Generator Equations:
gen_C:Z4_0(0) ⇔ Z
gen_C:Z4_0(+(x, 1)) ⇔ C(Z, gen_C:Z4_0(x))

No more defined symbols left to analyse.

(16) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n1) was proven with the following lemma:
a(gen_C:Z4_0(n6_0), hole_a2_0, hole_a2_0) → gen_C:Z4_0(n6_0), rt ∈ Ω(1 + n60)

(17) BOUNDS(n^1, INF)

(18) Obligation:

Innermost TRS:
Rules:
a(C(x1, x2), y, z) → C(a(x1, y, z), a(x2, y, y))
a(Z, y, z) → Z
eqZList(C(x1, x2), C(y1, y2)) → and(eqZList(x1, y1), eqZList(x2, y2))
eqZList(C(x1, x2), Z) → False
eqZList(Z, C(y1, y2)) → False
eqZList(Z, Z) → True
second(C(x1, x2)) → x2
first(C(x1, x2)) → x1
and(False, False) → False
and(True, False) → False
and(False, True) → False
and(True, True) → True

Types:
a :: C:Z → a → a → C:Z
C :: C:Z → C:Z → C:Z
Z :: C:Z
eqZList :: C:Z → C:Z → False:True
and :: False:True → False:True → False:True
False :: False:True
True :: False:True
second :: C:Z → C:Z
first :: C:Z → C:Z
hole_C:Z1_0 :: C:Z
hole_a2_0 :: a
hole_False:True3_0 :: False:True
gen_C:Z4_0 :: Nat → C:Z

Lemmas:
a(gen_C:Z4_0(n6_0), hole_a2_0, hole_a2_0) → gen_C:Z4_0(n6_0), rt ∈ Ω(1 + n60)

Generator Equations:
gen_C:Z4_0(0) ⇔ Z
gen_C:Z4_0(+(x, 1)) ⇔ C(Z, gen_C:Z4_0(x))

No more defined symbols left to analyse.

(19) LowerBoundsProof (EQUIVALENT transformation)

The lowerbound Ω(n1) was proven with the following lemma:
a(gen_C:Z4_0(n6_0), hole_a2_0, hole_a2_0) → gen_C:Z4_0(n6_0), rt ∈ Ω(1 + n60)

(20) BOUNDS(n^1, INF)